EXCERPT:
August 1, 2024
NOAA-supported scientists announced today that this year’s Gulf of Mexico “dead zone” — an area of low to no oxygen that can kill fish and marine life — is approximately 6,705 square miles, the 12th largest zone on record in 38 years of measurement. This figure equates to more than 4 million acres of habitat potentially unavailable to fish and bottom species, an area roughly the size of New Jersey.
Scientists at Louisiana State University and the Louisiana Universities Marine Consortium (LUMCON)offsite link led the annual dead zone survey July 21–26 aboard LUMCON research vessel Pelican. This annual measurement is a key metric that informs the collective efforts of the Mississippi River/Gulf of Mexico Hypoxia Task Force, a state/federal partnership which has set a long-term goal of reducing the five-year average extent of the dead zone to fewer than 1,900 square miles by 2035.
While the NOAA-supported research surveys provide a one-time snapshot of the dead zone, the five-year average captures the dynamic and changing nature of the zone over time. The five-year average size of the dead zone is now 4,298 square miles, more than two times larger than the 2035 target.
“It's critical that we measure this region's hypoxia as an indicator of ocean health, particularly under a changing climate and potential intensification of storms and increases in precipitation and runoff,” said Nicole LeBoeuf, assistant administrator of NOAA's National Ocean Service. “The benefit of this long-term data set is that it helps decision makers as they adjust their strategies to reduce the dead zone and manage impacts to coastal resources and communities.”
In June, NOAA predicted an above-average sized dead zone of 5,827 square miles, based primarily on Mississippi River discharge and nutrient runoff data from the U.S. Geological Survey. The measured size fell within the uncertainty range for NOAA’s ensemble forecast, demonstrating the overall accuracy of the underlying models and their ability to be applied as tools for nutrient reduction strategies.
“The area of bottom-water hypoxia was larger than predicted by the Mississippi River discharge and nitrogen load for 2024, but within the range experienced over the nearly four decades that this research cruise has been conducted,” said Nancy Rabalais, Ph.D. professor at Louisiana State University and LUMCON, and co-chief scientist for the cruise. “We continue to be surprised each summer at the variability in size and distribution.”
...continued at link....
|
|